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We rely on the lattice element method to simulate and analyze the stress fields at subparticle scales in
two-dimensional granular solids composed of particles of variable stiffness together with an interstitial matrix
of variable volume fraction. We find that the contact force distributions as approached from the subscale
stresses are similar to those obtained from a particle-scale discrete element approach. This means that the
well-known properties of force distributions in model granular media, with hard particles and without an
interstitial phase, can be extended to materials such as concrete and sandstone involving a jammed particle
phase. Interestingly, the stress distributions are exponential at the contact zones and they are mainly guided by
the particle phase in compression and by the matrix in tension. We also show that the distributions are
increasingly broader for a decreasing matrix volume fraction in tension whereas in compression they depend
only on the particle stiffness.
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The highly inhomogeneous nature of force transmission
in granular media is a recurrent research topic that has mo-
tivated careful experimental work and numerical simulations
for 15 years �1–5�. A basic observation is that the force net-
work involves two mechanically distinct subnetworks �6�:
�1� strong forces �or force chains�, typically above the mean
force, with a decreasing exponential distribution and �2�
weak forces with a nonvanishing probability even at vanish-
ingly small forces. These robust features are not only essen-
tial to the rheology of granular materials, but appear to be
more generally a hallmark of jammed systems �7�.

The problem is that this whole body of interesting find-
ings concerns basically model granular systems with highly
simplified composition and texture. Most granular materials
encountered in nature or in industry involve however de-
formable particles embedded in a solid matrix of variable
volume and cohesion with the particles. Well-known ex-
amples are sedimentary rocks �sandstones, conglomerates,
and breccia�, biomaterials such as wheat endosperm �starch
granules forming a compact structure bound together by a
protein matrix� �8,9�, and many geomaterials such as mor-
tars, concrete, and asphalt �aggregates of various sizes glued
to each other by a cement paste� �10�. It is not obvious to
what extent the well-known characteristics of force transmis-
sion established for model granular systems can be applied to
this broad class of granular materials with complex micro-
structure. Does the presence of a particulate backbone suffice
to produce the same heterogeneous force distributions as in
model granular media? One fundamental issue is how a pore-
filling solid matrix affects stress transmission and in which
respects it depends on the matrix volume fraction. It is not
neither straightforward to generalize the force distributions
under compressive loading to the case of tensile loading for
a cohesive particle-matrix interface. In a similar vein, the
role of particle stiffness and extended contact zones between
the particles in stress transmission is not evident.

To deal with these issues, one clearly needs an approach
in which the stresses can be resolved at subparticle �and sub-
matrix� scales. Thereby, not only the stresses are obtained in
the bulk of the particles and matrix, but also the contact
forces can be accessed by coarse graining from the stresses at

finer scales. This approach enables us to revisit and validate
also the contact force distributions established in the limit of
infinitely rigid particles without matrix as in model granular
media used, e.g., in discrete element methods �DEM�.

In this paper, we propose such a methodology based on a
lattice-type discretization of the particles, matrix, and their
interface. In this method, to which we refer below as lattice
element method �LEM�, the elastic deformations of the par-
ticles are taken into account not only at their contacts with
other particles or with the matrix, as in DEM, but also in
their bulk. The matrix is introduced with variable volume in
the pores between the particles with its elastic properties and
adhesion with the particles. The LEM is numerically efficient
enough that samples of a large number of well-resolved par-
ticles can be simulated. Our findings are consistent with the
idea that the granular backbone is at the origin of stress
chains that are evidenced also in the presence of a matrix. By
comparing the force distributions in a packing simulated al-
ternatively by LEM and DEM in the limit of low matrix
volume fractions, we demonstrate the relevance of both
methods. The matrix volume fraction, particle stiffness, and
loading affect appreciably the level of force heterogeneity,
which is reflected in the width of stress distributions.

The LEM has been extensively used for the statistical
mechanics of fracture in disordered media and applied to
study the fracture properties of ceramics, concrete �10�, and
biomaterials such as wheat endosperm �8,9�. The space is
discretized as a grid of points �nodes� interconnected by one-
dimensional elements �bonds�. Each bond can transfer nor-
mal force, shear force, and bending moment up to a thresh-
old in force or energy representing the cohesion of the phase
or its interface with another phase. Each phase �particle, ma-
trix� and its boundaries are materialized by the bonds sharing
the same properties. The samples are deformed by imposing
displacements or forces to the nodes belonging to the con-
tour. The total elastic energy of the system is a convex func-
tion of node displacements and thus finding the unique equi-
librium configuration of the nodes amounts to a
minimization problem. Performing this minimization for
stepwise loading corresponds to subjecting the system to a
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quasistatic deformation process. The method used here can
be found in more detail in Ref. �9�.

We first focus on the stresses in a packing subjected to
vertical compression with free lateral boundaries. The pack-
ing is constructed by isotropic compaction of a gaz of disk-
like particles by DEM simulations in 2D by setting the fric-
tion coefficient between the particles to zero in order to get a
dense packing. A rectangular portion of this packing contain-
ing about 5000 particles is discretized on a triangular lattice.
The solid fraction is ��0.8. The particle diameter d varies
between dmin and dmax=3dmin with a uniform distribution by
volume fractions �P�d��d2�. The matrix is introduced in the
form of bridges of variable width depending on the overall
matrix volume fraction between neighboring particles dis-
tributed homogeneously throughout the system. The elastic
properties of each phase are controlled by the linear elastic
properties of the bonds. The main elastic parameters that will
be considered in this paper are the Hooke constants kp and km

of the bonds belonging to the particles and matrix, respec-
tively. The corresponding coarse-grained stiffnesses are Ep

=�3kp / �2a� and Em=�3km / �2a�, where a is the bond length,
for a regular triangular lattice �9�. The initial state is the
reference �unstressed� configuration. Under vertical deforma-
tion, the bonds deform and a stress field develops inside the
packing. A stress tensor �a can be attributed to each node a
of the lattice network �9,11�: �ij

a = 1
Va �bri

abf j
ab where the sum-

mation runs over all neighboring nodes j, ri
ab is the i com-

ponent of the vector joining the node a to the midpoint of the
bond ab, and f j

ab is the j component of the bond force.
Figure 1 shows the vertical stress field �yy for a small

vertical compression of a packing with a small matrix vol-
ume fraction �m. The node stresses are represented by pro-
portional color levels over the elementary hexagonal cells
centered on each node. We observe chains of highly stressed
particles and higher concentration at the contact zones be-
tween the particles. Note that in this example the deforma-
tions are elastic and no bond is damaged. A bond can be
damaged if a threshold in force is reached, but this is not of
concern in this paper where we assume that all the bonds are
active.

In order to compare the LEM simulated packing with
DEM simulations of the same packing, for which only con-

tact forces are accessible, we compute the contact forces f� by

summing up the bond forces f�ab for all bonds ab crossing the

contact plane S : f�=�ab�Sf�ab. Figure 2 shows the map of nor-
mal forces between particles for the LEM packing as well as
for the same sample simulated by DEM with adhesion, i.e.,
by introducing a tensile strength at the contact points be-

tween the particles. We observe strikingly similar force
chains although the two methods are radically different. The
probability density functions �pdf’s� of normal and tangential
forces from LEM and DEM simulations are shown in Fig. 3.
We observe that the two pdf’s coincide over nearly the whole
range of forces. This agreement between the two methods is
all the more interesting that in DEM the particles are as-
sumed to be rigid and the stresses inside the particles are not
involved in the calculation of contact forces. The pdf has the
well-known features of force distributions in dry granular
media The forces below the mean have a nearly uniform
distribution whereas larger forces represent a nearly expo-
nential decay: Pf�fn��e−�fn/�fn	. This excellent agreement be-
tween the force pdf’s with ��1.35 may be considered as a
validation of DEM simulations in the sense that the contact
forces in LEM simulations are calculated from finer scale
�2,4,5�.

We now use LEM simulations to analyze the distributions
of stress components inside the packing for a �m=0.01. This
corresponds to thin matrix bridges between the particles. The
pdf of the vertical stresses �yy is displayed in Fig. 4�a� for a
packing under vertical compression. Since the sample is un-

FIG. 1. �Color online� Vertical stress field �yy represented in
color level.
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FIG. 2. �Color online� A map of normal forces in a portion of a
sample under vertical compression simulated by �a� DEM and �b�
LEM. Line thickness is proportional to the normal force.
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FIG. 3. Probability density function of normal forces �a� and
tangential forces �b� in a sample axially compressed by LEM and
DEM simulations. The forces are normalized by the mean normal
force.
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der axial compression, only 4% of vertical stresses are tensile
and are thus not shown in Fig. 4�a�. The stress pdf can be
split into three parts for weak, intermediate, and strong
stresses a map of which is shown in Fig. 4�b�. The strong
stresses fall off exponentially as contact forces �see Fig. 3�,
P���yy��e−��yy/��yy	 with ��0.95, and they mostly concen-
trate at the contact zones. The weak stresses have nonzero
pdf, much the same as weak contact forces, reflecting the
arching effect, and they occur mainly inside the unstressed
particles or in unstressed parts of the particles. Finally, the
intermediate stresses are centered on the mean and are al-
most totally localized inside the particles.

It is expected that at higher matrix contents the stress is
more homogeneously redistributed inside the packing. Fig-
ures 5�a� and 5�b� show P� for three values of �m in tension
and compression for kp=100km. The exponential tail persists
both in tension and in compression, but at similar matrix
volume fraction, the pdf of strong stresses is broader in com-
pression than in tension. This means that stress redistribution
is more homogeneous in tension than in compression.

It is also interesting to observe that the stress pdf is not
affected by the matrix volume fraction in compression but it
is increasingly broader in tension for decreasing matrix con-
tent so that the stresses are more and more concentrated in
the bridges between the particles. In tension, the exponent �
varies from 1.10 to 2.55 as �m varies from 0.08 to 0.12
whereas in compression we have ��0.95 for all �m. As the
�m increases, the pdf of intermediate stresses, corresponding
mainly to the stresses in the bulk of the particles, becomes
peaked on the mean stress.

We now consider the influence of relative stiffness kp /km

on stress distributions. Figures 6�a� and 6�b� show the verti-
cal stress pdf’s for three values of kp /km in tension and com-
pression for �m=0.10. It is remarkable that in tension the
particle stiffness has little influence on the pdf whereas in
compression the pdf becomes increasingly broader for an
increasing particle stiffness. The respective effects of particle
stiffness and matrix volume fraction can be understood by

remarking that, due to the presence of a granular backbone,
the stress chains are essentially guided by the cementing ma-
trix in tension and by the particle phase in compression.
Therefore, the stress transmission is not affected by the ma-
trix volume fraction in compression and only slightly influ-
enced by particle stiffness in tension.

It is worth mentioning that in our LEM simulations the
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FIG. 4. �Color online� �a� Probability density function of verti-
cal stresses normalized by the average stress in compression. �b�
Tricolor map of vertical stresses with weak, intermediate, and
strong stresses represented in yellow, orange, and red, respectively.
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FIG. 5. Probability density functions of normalized vertical
stresses for three values of the matrix volume fraction �a� in tension
and �b� in compression. For the sake of visibility, there are more
data points than symbols.
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FIG. 6. Probability density functions of normalized vertical
stresses for three values of the relative stiffness kp /km �a� in tension
and �b� in compression. For the sake of visibility, there are more
data points than symbols.
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only source of disorder is the particle configuration, the un-
derlying bond network remaining a regular lattice. Hence,
the stress distribution and its variability as a function of �m

and kp /km are only related to granular disorder. This explains
why the stress pdf’s are robust and only qualitatively depend
on the parameters. In particular, the exponent � of the expo-
nential pdf of strong stresses reflects basically the degree of
homogeneity of stress transmission. The trends are similar
for the other stress components and for this reason were not
shown in this paper.

In short, the LEM approach provides an efficient frame-
work for the investigation of stress fields in more complex

granular solids than usually considered model granular me-
dia. Using this approach and by integrating subparticle
stresses, we arrive at the same contact force distributions as
in usual DEM simulations and experiments. Our findings in-
dicate that, irrespective of particle stiffness and matrix vol-
ume fraction, the strong stresses are mainly localized at the
contact zones between the particles and they have an expo-
nential distribution as strong contact forces. In this way, the
well-known properties of force distributions in model granu-
lar media can be extended to cemented materials such as
concretes, sandstones, and dense particle reinforced compos-
ites.
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